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NATIONAL ADVISORY COMMITTEE FOR -AERONAlTICs~~ 

TECRNICALNCTE 3288 

ON THE ANALYSIS OF IINEAR AND NONLINE4R DYNAMICAL SYSTEMS 

FROMTRANSIENT-RESF'ONSEDATA 

By Marvin Shinbrot 

A general theory of the so-called "equations-of-motion" methods for 
the analysis of linear dynamical systems is developed first. It is then 
shown that when viewed from this general point of vantage, all of these 
linear methods can be extended in a straightforward manner to apply.to 
the analysis of nonlinear systems. In addition, through use of this 
theory, a new method is derived. It is essentially a variation of the 
well-known "Fourier transform" method for the analysis of linear systems 
but possesses certain advantages over previous methods. Application and 
effectiveness of this method are demonstrated by three examples, two of 
which are nonlinear - one highly so - and the third being of the fourth 
order. 

INTRODUCTION 

It has often been suggested (e.g., in ref. 1) that nonlinearities 
which are ignored in the classical theory of the equations of motion of 
an aircraft may be responsible for certain unusual phenomena which have 
been observed in flights of modern high-speed airplanes and missiles. 
Consequently, it seems desirable to develop methods for the analysis of 
such nonlinear systems - methods which allow the calculation from measured 
transient-response data of the nonlinear stability characteristics as well 
as the classical linear stability derivatives of the aircraft. Several 
such methods are described in reference 2, the principal one consisting 
of a generalization of the so-called "derivative method" which was orig- 
inally devised for use with linear systems (cf. ref. 3). However, the 
methods described in reference 2 leave something to be desired from both 
points of view of accuracy of the results and lengthiness of the calcu- 
lations. In addition, application of these methods requires, in all but 
the simplest cases, the previous evaluation by some means of those sta- 
bility characteristics which are linear. In view of these shortcomings, 
an attempt has been made in the present study to find simpler, more accu- 

' rate, and more general procedures. The problem is attacked by first exam- 
ining several well-known methods for the analysis of simple linear systems 
and then modifying them as necessary to allow their application to more 

I general systems. 
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Many methods for the analysis of linear systems have been proposed 
in the past (see, e.gD, refs. 3 and 4). In reference 5, these methods 
have been classified under two main heads: "equations-of-motion" method8 
and "response-curve-fitting" methods, the former title including the 
derivative method and what have been called the mace transform and the 
Fourier transform methods (ref. 31, and the latter consisting of such 
methods as Prony's (refs. 3 and 6) and the techniques of ‘reference 4. 
SFnce the response-curve-fitting methods involve the explicit--soluMon 
of--the equations of motion in terms af the physical parameters of the 
system at hand, they do not seem suitable for use with nonlinear systems. 
Hence, we shall-be concerned solely with the equations-of-motion methods. 

Each of these methods has been consider-ed in the literature as an 
independent entity; apparently, no attempt has ever-been made to subsume 
all of them under a single general theory. For the purposes of the pre- 
sent study, such a theory would be desirabie since it seems reasonable to 
expect-first that when viewed from a more general point of view, a gen- 
eralization of the methods to nonlinear systems might appear; and second 
that once such a theory is known, it might be possible to develop new 
methods, superior in certain respects to the old ones from which the 
theory sprang. 

In accordance with this plan, the paper beginstith a short-presen- 
tation of the three best known of the equations-of-motion methods. These 
methods are examined from a new point of view which138 then shown to lead 
to the general theory for linear systems; The further extension to non- 
linear systems is considered next, B&sed on the general theory, develop- 
ment of a new method far data analysis follows. Finally, some examples 
of the application of this recommended method are given. 

SYMB0.M 
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linear lift force, lb 

aL 
z 

32 
as 

nonlinear lift force, lb 

mass of aircraft, slugs 

linear pitching moment, ft-lb 

a&f 

aM 
as 

aM 

nonlinear pitching moment, ft-lb 

pitching velocity, radians/set 

time, set 

velocity of aircraft, ft/sec 

Other symbols will be defined a8 they are introduced. 

ANALYSIS 

Some Equatione-of-Motion Methods for Linear Systems 

In the presentation of the general theory of equations-of-motion 
methods, it is desirable to have 8ome examples of these methoda set down 
for examination. The three best known of these methods are briefly 
described below; for a more detailed discussion of them, see reference 3. 
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As a concrete example, let us consider an airplane operating under 
conditions where the stability characteristics are -effectively linear, 
so that, as in reference 3, the equations of its longftudinal motion can 

- be written 
1 

- aLcG -&V+ qmV = 6% 

- a.& - & - qMq + qIy = 6% 

- 
It will be convenient to eliminate q and so to write these equations as 

q-t;) + G(t) + h(t) = c&t) + c&t-) (1) 

where dots denote differentiation with respect- to time t. L-t is assumed 
that time histories of a(t) and 6(t) are available from flight records 
and that one wishes to calculate the constants b, -k, Co,'and C,. For 
simplicity, it will further be assumed that the--constant b is positive 
and that 6(t) is a pulse-, so that 6(t) is zero for t sufficiently 
large. These restrictions will be removed farther on. 

The.derivative method.- In order to apply the-derivative method, it 
is necessary first to differentiate the given records to obtain the 
derivatives dG(t), g(t), and 6(t). Then, for fixed q equation (1) may 
be considered as an equation for the constants b, k, Co, and C,. By 
letting t vary, a set of such equations can be obtained, which can in 
turn be solved by least squares (see reference 6, page 210, where, however, 
the integral rather than the sum of the squares of the errors has been 
minimized) for the desired constants. By this procedure, the following 
equations are obtained: 

s 00 

f 

00 

00 

f 

03 co 

b c?dt+k &dt- Co &dt - C, & &dtr 
s 

ri 'Ed-b 
0 0 0 0 

1 m co 
b s 

00 
a&dt+ k a2dt - Co 

0 s 0 f 0 
(2) 

s 

w 

s 

m 

s 

m 

-b &&t-k Gadt.+ Co 
0 0 0 

-b 
f 

03 w w 
$&it-k 6adt + Co 

0 f 0 f 0 

Equations (2) can be solved for the desired parameters b; k, Co, and C,. 
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The Laplace transform method.- Letting A(p) and A(p) denote the 
Laplace transforms of a(t) and 8(t),-respectively, so that 

A(P) = f me-pt a(t)dt 
0 

A(P) = f me-pt s(t)dt 
0 

it follows that if a(t) and 6(t) are related by equation (l), then 

(3) 

(P2 + bp + k) A(P) = (C,P + Co) A(P) (4) 

(ref. 7). In writing 
ity that a(0) = G(O) 
be removed later on. 
in b, k, Co, and C,. 
6(t) for several such 

down equation (4), it has been aSSUEd for simplic- 
= 6(O) = 0; this restriction is inessential and will 
For any value of p, equation (4) is an equation 

After finding the Laplace transforms of a(t) and 
values of p, say for p = pl, pp, . . ., PN, the 

.ing equations (4) can be set up and solved by least squares to correspond 
obtain 

b 
c 

Pi2A2(pi) + k 
.c PiA2(Pi) - CO c piA A - 

Cl c 
PisA(Pi) &Pi) = - 

c 
Pf3A2(Pi) 

b 
c piA2(pI) -I- k c A2(pf) - Co 

c A(Pi) &Pi) - 

5 c 
PIA A(Pi) = - 

c 
pi2A2(pi) 

c c 

(5) 
-b PiA &Pi) - k A(pi) &pi.) + Co A2(pi) + 

Cl 
c 

P$~(P~) = Pi2A(Pf) &Pi) 

-b Pi2A(Pi) ACPi) - k 
c 

PIA &pi) +Co 

% c 
pi2A2(pi) = 

c 

where all sums are over the range 1, . . ., N of the index i. These 
equations then can be solved for the desired constants. 

The Fourier transform method.- The Fourier transform method proceeds 
in much the same way as did the Laplace transform method. 
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Defining -. 

f 
m 

A(iw) = esiwt a(t) dt 
0 

A(iw) = 
s 

-eMiWt 6(t) dt 
0 

(12 = - I), it follows that-if a(0) = dc(0) = S(O), then 

[(i~)~ + iwb + kl A(iw) = [Co + iti,] A(iw) 

(61 

(7) 

This equation can be written as two real equations by setting 

A(iw) = C(w) - is(w) 

A(iw) = r(w) - i c(w) 
1 

Putting equations (6) and (8) together, we see this--means that 

f 
co c(w) = a(t) co8 wtdt s(w) = 

0 f 
m 

a(t) sin wtdt- 
0 

s 

03 
r(w) = 6(t) COB wtdt c(w) = 

0 s 

03 
6(t) sin wtdt 

0 

Breaking equation (7) into its real and imaginary @arts gives 

(81 

w S(w)b + C(w)k 

w C(w)b - S(w)k 

- r(wNo - w c(w) c, = w%(w) 

+ c (w)co - w r(w)c, = - SS(W) 

After C(w), S(w), r(w), and C(w) have been evaluated for several values 
of w, substitution into these equations yields a number ofequations 
for b, k, Co, and C, which can be solved by least squares. These eqga- 
tions, corresponding to (2) and (5), are exceedingly complicated and will .- 
not be reproduced here. 

- 
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The Common Feature of These Methods and the First Generalization 

Each of these methods is usually derived as in the preceding section, 
through use of a certain specialized concept. Thus, the derivative method 
is based on the fact that for fixed t, equation (1) is linear in b, k, 
CO, and Cl, so- that a set of simultaneous linear equations for these 
parameters can be obtained by varying t. The Laplace and Fourier trans- 
form methods stem from the theory of these operators. Thus, if a(t) 
and 6(t) are related by the linear differential equation (l), their 
Laplace transforms are related by equation (4). However, equation (4) 
is linear in the p.arameters, and so by writing this equation for several 
values of p, one can solve the resulting equations by least squares for 
the desired constants. These derivations tend to obscure the common 
idea which can be shown to lie behind all the methods. This difficulty 
can be overcome if these particular derivations are forgotten and if 
attention is fixed entirely on the formal processes whereby the final 
least squares equations are obtained. With this in mind, let us recon- 
sider the three methods. 

The derivative method.- Equations (2) for the derivative method are 
formally obtained by 

(1) Multiplying equation (1) by the four functions 
k(t), a(t), B(t), and 6(t) one at a time and 

(2) Integrating the results from zero to infinity. 

We should forget for the moment the interpretation of this procedure as 
the solution of equation (1) by least squares, and simply keep the process 
of multiplication and integration in mind. 

The Laplace transform method.- A similar process can be described 
for the Laplace transform method. Choosing N( 24) positive numbers pi, 

(1) Equation (1) can be multiplied by the functions 
e -pit, 1 = 1, . . ., N, and 

(2) The results can be integrated from zero to infinity. 

If the resulting equations are solved by least squares, precisely eqm- 
tions (5) for the determination of the parameters by the Laplace trans- 
form method are obtained, provided that in step (2) any integrals which 
arise involving derivatives of a(t) and 6(t) are integrated by parts 
to eliminate these derivatives. 

It should be noted that although there appears to be one more step 
here than there was in applying the derivative method - notably an addi- 
tional least squares following step (2) - this addition is more apparent 
than real, since it is necessary to apply a least squares process here 
merely because N (which is generally greater than four) equations are 
obtained for the four parameters, while in the derivative method exactly 
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four such equations were obtained. Thus, the least squares step could 
be eliminated by choosing N = 4 (of course, such a choice is not really 
practical), or, alternatively, such a step could be added to the- deriv- 
ative method by solving the equations resulting from step (2) in that 
method by least squares instead of in the ordinary way. Of course, such 
a step would only be made to make the two methods so far described 
formally more similar; in practice, it would not be performed.- 

The Fourier transform method.- Finally, 

(1) If equation (1) is multiplied by co8 wt and sin wt 
for several values of w, and 

(2) If the results h-e integrated from zero to infinity 
(as in the Iaplace transform method, integrating by parts 
to eliminate explicit dependence on the derivatives of a 
and S), 

one obtains a set of equations identical with those obtained from the 
Fourier transform method. 

The general method for linear systems.- The general development of- 
equationa;of-motion methods is now manifest. One takes the equations of 
motion for the physical system under consideration - for definiteness, 
say equation (1) - and 

(1) Multiplies them by N arbitrary (but sufficiently 
smooth) functions y,,(t). 

(2) The resulting equations are then integrated between 
two definite limits, say, zero and T. 

In the three methods described above, T = 03, but this is not essential. 
In order to avoid some complications initially, we shall continue to 
integrate over this infinite interval; this restriction will subsequently' 
be removed, however, and T will be allowed to have finite values. In 
the case of equation (1), the proc-ess just described leads to N equa- 
tions of the form 

f 
co 

b y,(t)&(t)dt + k 
0 s 

O3 yv(t)a(t)dt - Co 
f 

O" Yv(t)S(t)dt-- 
0 0 

co w 
Cl 

s 
y,,(t)f,(t)dt-= - f y&)ti(t-)a- v = 1, . . ., N (9) 

0 0 

It is possible that the functions yV(t) depend on a(t) or 6(t) as, for 
example, in the derivative method; in such cases, equations (9) can be 
considered as N equations which are to be solved by least squares for 
the desired parameters. Of course, $his process requires the calculation 
of the derivatives L(t), E(t), and 6(t). On the other hand, if the 
functions y,(t) are explicitly independent of 'a &nd 6; as is the case 

- 



NACA TN 3288 9 

In the Laplace and Fourier transform methods, the following formulas, 
obtained by integrating by parts, are used: 

J y&k%t>dt = - ~,,(Ob(o) 
0 -s 

03 
i,,(tb(t)dt 

0 

J- y&)g(t)dt = - y,,(O)&(O) 
0 

s 

00 
yir(+(t)dt = - ~,,(o>S(o) 

0 

+ i,,(o>do> + J ?,,(tb(t)dt 
0 

nco 

-J $&@(t)dt 
0 

Substitution into equation (9) gives 

[ s 
m - b Yap + i,,(t>dt)dt + 

0 1 
co I- 

JO 

yv(t@(t)dt + C, 
F 

s 

m 

k y,(tkdt)dt - 
0 

+ 
s 

OD ;,(t>s(t>dt = y,,(O)&(O) - 
0 1 

?&%(O) - j j;,(t>&>dt, Y = 1, 2, . . ., N (10) 
0 

Equations (10) are N equations in b, k, Co, and Ci. If N 14, they 
may be solved by least squares for these parameters. 

The choice of the functions y,,(t) defines which equations-of-motion 
method is being used. For this reason, these functions will be referred 
to as the "method functions." 

Generalization to Nonlinear Systems 

In this section, all considerations will refer to the equations of 
longitudinal motion of an aircraft. It will be seen that the method 
actually is applicable to a far wider class of equations - in particular 
to the equations of lateral motion of an aircraft, including, if it is 
so desired, cross-coupling terms. The special analysis presented here 
can be extended to other problems, the only real restriction being that 
for practical reasons too many parameters cannot be handled at once. 

The following equations, which involve assumptions of constant air- 
speed, smallness of certain quantities, etc., are often used to describe 
the motions of an aircraft which has linear stability characteristics: 

-dL,- cimV+ qmV = 8% 

-a& -t& - qq+ iIy= "MS 
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If, on the other hand, it is assumed that the lift and moment function8 
are nonlinear in a, these equations become- 

- Lb) - &IS+ qmV = 6% 

- MbS - c& - qMq + qIy = EM, I 

(11) 

We shall assume that over the range of interest, approximations of the 
following form are valid: 

L(a) = Lla + &a2 + . . . + Lzczz 

I 
(W 

M(a) = Mla + &a2 + . . . + MnG 

where the coefficients Lip Mi are constant. Only the first three terms 
of this series will be retained in the pr-esent-analysis since this three- 
term approximation usually balances very well the opposing requirements 
of simplicity and adequate representation of the aerodynamic parameters. 
If more terms are found to be necessary in a particular problem they can, 
of course, be added. It should be noted that this three-term approxima- 
tion is still fairly general, even retaining the possibility of asymmetry 
in the nonlinearitieg. 

By use of the approximations (12) with 2 = n = 3, equations (11) 
can be written 

Ll L2 2 L3 

-27 a--a mV -mv a3 

Ml M22 MO3 %if* MS --a--a --a --a-- 
=Y =Y =Y =Y 

03) 

The generalization af the methods of the preceding sectton to such non- 
linear systems proceeds in the obvious way. First, multiply eadh of 
equations (13) by N method functions y,,(t) which have been selected 
as suitable. This operation is followed by integration of the resulting 
2N equations. If records of-the derivatives i and & are not available, 
one then eliminates the terms involving these derivatives by integration 
by parts. The result is N equations in L,, L&L3, and k and N equa- 
tions in M,, M2, M,, m, and %. If NZ 5, these two sets of equations 
can be solved by least squares for the parameters. 

Of course, the pitching velocity q can be eliminated from equa- 
tions (11) to yield the single equation - 
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. . 
a- 

c 

where 

L’ (4 = $ L(a) 

With the approximations (l2), this leads to the following generalization 
of equation (1): 

z t- (bo + bla + b2a2)G + (k. + kla + ks2)a = Co6 + C,6 (14) 

where 

b. = - ( %+Ms 
=Y =Y 

b, = 3 

Ll mv 
(15) 

By applying the method described to equation (lb), the constants bo, b,, 
b2, ko, kl, k2 can be calculated. 

Solution for the parameters in equations of the general form of 
equation (14) is of interest to workers in many fields. In addition, 
the evaluation, from these parameters, of the stability constants occur- 
ring on the right sides of equations (15) is of considerable interest to 
aeronautical engineers, and so this problem will be considered in further 
detail. One cannot, in general, isolate the constants Li and Mi to 
obtain, from values of the bi and the ki, the nonlinear functions L(a) 
and M(a). For this reason, it is ordinarily best to apply the method 
directly to equations (13) rather than to equation (lb), provided that 
records of both q(t) and a(t) are available. 

On the other hand, there 5s one case of interest when equation (14) 
can be used directly and measurements of q(t) are not needed. It some- 
times happens that while the pitching moment M(a) is nonlinear, the lift 
L(a) can still be successfully approximated by a linear function. In 
this case, we have the approximations 

Lb) = La 

Mb) = Mla+ Ms2 + ec? 
I 

(3-6) 
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and so equation (lb) becomes 

l & + bdL + (k. f k=a + +2)a = Co8 + Cl6 

where 

k. = - %+&La. -s 
=Y Iy mV 11 

k, = w % 

=Y 

M3 k2=-- 

=Y 

(17) 

(18) 

Thus in this case, -Mq Lcr, M(a) can, except for the term i - occurring in the 
Iy mV 

expression for ko, be obtained from an analysis of--equation (17). At 
high speeds, however, this term is small and its effect on the curve of 
Mb) versus a can be neglected. 
formaas (18) 

Thus, the emression for k. in 
can be replaced by the expression 

(19) 

and in this case, the nonlinear moment M(a) is completely determined by 
the knowledge of kor k,, h, and, of course, Iy. 

Choice of the Method.Functione 

Up to this point in the.general discussion, the method functions 
y,,(t) have been to a very great extent arbitrary, having to satisfy only 
certain weak smoothness conditions. In this section, the possiblity of 
developing new and perhaps improved methods for data analysis by means 
of a particular choice of the method functions will be explored. 

Previous experience, con&sting in part of unpublished analyses per- 
formed at Ames Aeronautical Laboratory, have indicated that the Fourier- 
transform method generally results in greater accuracy than either the 
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derivative or the Laplace transform methods.1 For this reason, the 
method to be discussed will be a variation of the Fourier transform 
method. 

Let us consider first some evident shortcomings in the Fourier 
transform method. These defects will offer definite goals to be held 
in mind in the development of a new method. First, there is a weakness 
in the Fourier transform method in that all integrations proceed over 
the interval from zero to infinity (cf. eq. (10)). This causes diffi- 
culties in any example in which a(t) and 6(t) do not approach zero so 
rapidly that their integrals exist. !Dx.u3, referring, for example, to 
equation (l), if b is not positive or if 6(t) does not approach zero 
quickly enough, the method cannot be applied straightforwardly. Further- 
more, even if b > 0 and 6(t) 4+0 in such a way that jwa(t)dt exists, 
the experimental record often is not long enough for this integral to be 
accurately calculable when the system is so lightly daml?ed (b small) 
that sizable oscillations persist even to the end of the run. One device 
which is sometimes used to overcome this difficulty is equivalent to a 
change in the method functions. 
COB ti, the functions e-Pt 

Instead of the functions sin Wt and 
sin ti and e-St co8 wt, tith some fixed 

constant ~3, are used. However, this leads to the same objection that 
was voiced in footnote 1 for the derivative and Laplace transform 
methods, notably that the method functions approach zero. Other tricks 
for dealing with such deficiencies 4 the Fourier transform method can 
be evolved, but, rather than develop new devices for each special case, 
it appears wiser to construct a generally applicable method in which 
these difficulties never arise - that is, one in which the titegration 
proceeds only over a finite interval. 

The second defect which we shall consider becomes clear from an 
inspection of equation (lo), with the functions yy(t) of the form 
sin ti and co8 ti for certain values of w. Referring to equation (lo), 
it is easily seen that one point, namely the point t = 0, is wezghted 
very heavily because of the occurrence of the quantities a(O), a(O), 
and 6(O). It should be noted that not only are the values of a(t) and 
6(t) at one point relied on to this great extent, but that even the 
relatively inaccurate value of the derivative of a(t) at that point is 
weighted. Thus, advantages in accuracy might be expected to accrue if 
these terms were eliminated. 

Since the method for overcoming this second deficiency in the Fourier 
transform method will also be used in treating the first, the problem of 
eliminating dependence on the initial values will be discussed now. To 
this end, consider equation (10). We begin with the Fourier transform 

IIt would seem that no rational explanation for this conclusion has 
heretofore been offered. However, the theory described herein appears to 
afford such an explanation. A long and rather tedious analysis based on 
this theory has indicated that the failure of both the derivative and the 
Laplace transform methods is due in large part to the fact that the asso- 
ciated method functions approach zero very rapidly as time progresses. 
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method, that is, with method functions yv(t) of the forms sin wt 
and COB (rtt. Noting that mostof the terms which depend on the initzial 
values at t= 0 are multiplied by y,,(O), it is seen that a choice of 
method functions such that ~~(0) is zero for all v = 1, 2, . . ., N 
represents a step in the right direction. Such a choice ie easy to 
make, since it is only necessary to eliminate those method functions 
which have the form COB w-t; then, we may write 

y,,(t) = ain wVt, Y = 1, 2, . . ., N (20) 

This does not entirely eliminate the dependence on the initial conditione, 
however, as the term $v(O>a;(O) remains in equation (10). If this term 
can also be removed, the second weatiess in the Fourier transform method 
will have been entirely corrected. This will clearly be the case if 
gv(0) a8 well aa y,,(O) ia zero for all V = 1, . . ., N. A possible 
choice of the method function8 for which this is 80, a choice which 
still retains the advantages of the favored Fourier transform method, is 
the following: 

yv(t) = sirP*t = 
1 - CO8 2b+t 

2 J Y=l,...,N ew 

With this choice of the method functions, equation (10) becomes 

-b s m s *I a.(t)jry(t)dt c k a(t)yv(t-)dt - Co 
0 0 

s OD 
s(t)y+jdt + 

0 

s 

00 

s 

03 (22) 

Cl G(t)&(t)dt = - &>j;,(t)dt 
0 0 

The method functions (21a) would be used for systema satisfying dif- 
ferential equations, like (l), which involve derivatives of the second 
order. More generally, and for the same reasons, if the highest order 
derivative occurring in-any of the equations of motion of a system Is 
the nth, the following method functions are suggested: 

YVW = slnn WV-t, V=l,...,N @lb) 

Thus, in the case of the two-degreee-of-freedom system described by 
equations (13), there is no.point in using formula (21a); the simpler 
method functLons (20) may aa well be used. 

As for the first of the weaknesses in the Fourier transform method, 
that which ia due to integration over an infinite Interval, it would 

. 
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appear at first glance to be easily disposed of by merely choosing some 
finite, positive number T and integrat5ng over the interval from zero 

This, however, introduces another difficulty. 
zvez*by equation (21a), so that ~~(0) = &,(O) = 0. 

Suppose yv(t) is 
Returning to the 

derivation of equation (lo), it may be seen that if one integrate8 only 
over the interval O<_t<T, all the good which has been achieved by 
eliminating dependence G the point t = 0 $s obviated by certain terms 
which arise - terms of the form yv(T)a(T), yv(T)a(T), and yV(T)G(T). 
Thus, the heavy dependence on the initial conditions is replaced by a 
dependence on the final conditions. Of course, the same approach as 
was used for eliminating the initial conditions can be used again - that 
is, the method functions can be chosen in such a way that 
Y&C) = pV(T) = 0. One possibility, naturally, is to choose the frequen- 
cies 9 such that 

sin 'JVT = 0, v=l,. . .,N 

Thus, we'can set 

WV = F, V=l,. . .,N 

This choice of the frequencies (corresponding to the method functions- 
given by equation (21b)) leads to an elegant method which gives satis- 
factory results in certain casea. On the other hand, the difference 

11 g 1.> 
between two successive frequencies is too large to define the 

requency responsell (to use loosely the terminology of the Fourier 
transform) of some examples adequately. For this reason, we should like 
to be able to choose the frequencies as follows: 

VII v WV==, =l,...,N (23) 

Of course, this means that for frequencies having en odd subscript, yy(T) 
will be different from zero. To overcome this difficulty, the following 
choice of the method functions can be made: If the highest derivative 
occurring in the equations of motion is the nth, define the method func- 
tions by the formulas 

Y+&) = 

sinnwW+lt, 05tr 
2P -T 2p+l 

0, 
2P -T<tzT 2u+l 

(24) 
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where the frequencies w,, are given by equation (23) and T is the 
length of the run. What has been done in choosing these method functions 
is the following: 
zero (i.e., 

Those method functions which are such-that yv(T) is 
those method functions which have even subscripts), have been 

left unaltered in the form given by equation (21b). The remaining method 
functionshave had the last quarter cycle, during which they would nor- 
mally have varied from 0 to Cl, chopped off, so that they are identically 
zero over part--of the interval 0 s't 5 T. The claim is not made that- 
this is the best of all possible.choices for the method functions. There 
is certainly no reason for such an assertion, particularly in view of the 
fact that a certain amount of the data is not used by each of the odd- 
numbered method functions. However, this amount i.8 small after all and 
no datum is completely discarded, since the even-numbered method functions 
use all the data. That these method functions do seem to be adequate is 
indicated by the results obtained in the examples @given below. 

Before-proceeding to the examples, one further- change, imposed in 
the interest of simplicity in the computations, will be made in the me-thod 
functions. For the odd-numbered method functions, certain complications 
arise in the computations due to the fact that the point (2~/2p+l)T at 
which the function is cutoff may not-coincide-with a point at which the 
data are tabulated. For this reason, values of even-numbered frequencies 
will be chosen in accordance with equation (23). The odd-numbered fre- 
quencies, on.the other hand, will be changed (by as little as possible, 
to be sure) in such a way that the following condition is satisfied. Let 
the data be tabulated at the points t = to, tl, . . ., tx, where 
tk+l - tk .= constant. The odd-numbered frequencies are then assumed to 
be chosen such that-, 

where tc, is that one of the two tabulation instants closest to the time 
(2~/2p+l)T having an even subscript. The--reason for this last condition 
is merely that it is convenient for a numerical integration procedure 
(such as the one in the Appendix) to have an even number of intervals 
(tk, tk+l); thus, Simpson's rule, for example,. calls for an even number ._ 
of intervals in its application. 

For many of the experiments performed on airplanes and missiles, the 
run is 2 seconds long and the time between tabulated points is 0.05 sec- 
ond, so that the tabulation times tu are at 0, 0.35, 0.10, . . ., 2.00 
seconds. For these values of T and at, the rule given above for the 
frequencies u,, is climaxed by the following table: 

* 
v 2 3 4 5 6 7 8 g 10 II IS 13 14 15 16 

3-t lo3-c 
*!zTa 
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The frequency w1 has been omitted from the table since, according to 
the rule for the determination of the method functions, y=(t) = 0 
(see eq. (24), ff.) and offers no information. A 2-second interval will 
be taken as standard in this report, and all computations will be based 
on such an interval. If one has a data run T seconds in length, it 
can of course be brought into this standard form by a preliminary sub- 
stitution of the form 

and we always assume such a transformation has been made. 

Thus, finally, the method may be summarized as follows: Select N 
frequencies in accordance with the rule given in the preceding paragraph. 
(The number N is chosen, as in the Fourier transform method, large 
enough to cover the frequency range of interest in the particular problem; 
usually, N = 16 is adequate.) Multiply the equations of motion by the 
method functions (24) and integrate the resulting equations from zero 
to T, where T denotes the length of the data run. Eliminating all 
explicit dependence of these equations on derivatives of the'data by 
successive integrations by parts results in N linear simultaneous equa- 
tions for the parameters. The coefficients in these equations are all 
integrals involving the recorded data; after these have been evaluated 
by some means,2 the equations can,be solved by least squares for the 
desired parameters. 

EXAMPLES 

Three example problems will be solved in order to demonstrate the 
effectiveness of the proposed analysis method and to illustrate asso- 
ciated computing techniques. An effort was made to select examples 
representative of problems which often occur in aircraft-response flight 
testing and which have not been handled adequately by other known analy- 
sis methods. These examples have been simplified in some respects, not 
because of fundamental limitations of the method, but in order to avoid 
obscuring the essentials of the method and of the related computing 
techniques. 

Although limited use was made of automatic digital computing machin- 
ery in the following analyses, it did not appear worthwhile to mechanize 
complete calculation procedures for these isolated illustrative examples. 
However, the method appears to be well suited to such mechanization. 

2See, for example, the Appendix, where a technique well suited for 
the type of integrations needed for this method is described. 
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Example I 

The first example concerns the longitudinal response of a hypothet- 
ical missile for which it is assumed that the lift varies linearly with 
angle of attack, although the pitching moment does:Jnot. The velocity of 
the missile is assumed to be sufficiently high for-the expression (18) 
for k. to be simplified to 

so that equation (17) canbe used to determine the lift and moment char- 
acteristics from a transient-response. A pulse response of a system 
described by equation- (17) was-obtained from a Reeves Electronic Analogue 
Computer and.it was d.ecided to consider this.r.esponse as given data to be 
anal zed. ' 

9 
The moment.of inertia of the missile was chosen to be 100 slug- - 

feet . The nonlinear moment curve M(a) versus a which was used to 
obtain the data is shown as the solid curve in figure 1. The linear eta- 
bility derivatives were chosen in such a way that the damping parameter 
is given by 

b=2 (25) 

In order to simplify the presentation, it was decided that free 
oscillations alone would be analyzed to determine only the constants 
occurring on the left-hand side of equation (17). -Thus, for the data 

m which will be analyzed, 6(t) = 0, and equation (17) becomes 

(26) 

A plot of-the a(t) "data" is given-in figure 2, and this information is 
listed in table I. 

Since equation (26) is of the second order, we shall choose, accord- 
ing to the rule given earlier, the method functions (2&) with n = 2; 
since the run is 2 seconds long and the time interval between data points 
is 0.05 second, the frequencies wv are chosen as in the table on 
page 16. 

Integrating factors I'n(y,,) corresponding to each function YVW 
and its first two derivatives are tabu1at.e.d in co-s 6 through 50 of 
table I. (As discussed in the Appendix, the m(yv) are numbers chosen 
such that for any integrable function x(t), the sum 

c x(tn)rn(Yv) 
n 
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is sn approximation to the integral of x(t)y,(t).) Accordingly, the 
sums displayed beneath table I are the integrals needed for the reduc- 
tion of the data, divided by the factor At = 0.05. Since this factor 
occurs homogeneously throughout the equations from which the parameters 
are to be found (i.e., the generalization of eqs. (22) to the nonlinear 
eq. at hand), it can be divided out of these equations, end the sums can 
be used directly without first multiplying them by At. 

In accordance with the method as it has been described, the equa- 
tions which are to be solved by least squares have the form 

dt)y,(t)dt + k, ~2(th(t>dt + 

The sums below table I are needed for the evaluation of the coefficients 
of b, br k,, and Q in the above equation. These sums are again 
listed in table II, and the coefficients in the last equation are set 
down as columns 4, 5, 6, 7, and 9 of table II. The sums displayed beneath 
table II are needed for the final least squares step of the solution. 
Using these sums, it can be seen that the following equations are to be 
solved for the parameters: 

. 

24.1669 b - 1.05270 k. - 0.336760 k, - 0.0140294 $ = - 7.01790 

- 1.05270 b + 0.885340 k. + 0.144127 k, + O.OOgO6lg2 ks = 45.5226 

- 0.336760 b + 0.144127 k. + 0.0374138 k, + o.oo18g6s k, = 7.00244 

- 0.0140294 b + O.OOg06192 k. + 0.00189656 k, + O.OOQlo8975 h = 0.459829 1 
(27) 

It may seem odd to some that four significant figures have been used in 
table II for the values of the integrals and six significant figures for 
the coefficients in equations (27), while the test data are not given to 
more than three significant figures. The reason for carrying more sig- 
nificant figures in the computations than there are in the data is to 
avoid eventual loss of accuracy due to round-off errors and other errors 
of a similar type. This procedure of carrying a few more (fictitious) 
figures than the data supply is usually necessary in order to retain even 
the basic information which is in the data. 
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Solving equations (27) gives 

b= 

k. = 

k, = 

%= 

1.95 

50.4 

- 30.5 

8.06 
I 

w3) 

The only parameter whose numerical value is given and which can be 
immediately checked is the- damping parameter. Comparing the values 
of b given in equations (25) and (28), we see that ithas been found 
with an error of 2.5 percent. .J?he constants ..ko, ki, ks cannotbe 
checked directly; however, the calculated pitching-moment curve 

M(u) = - Iy(koa + $a2 + Qa3) 

= - 5040 a + 3050 u2 - 8cdoo a" 

can be plotted and compared with the true curve from which we started. 
This has been done in figure 1 from which it can be seen that the error 
at the least accurate point is less than 3 percent. 

It should be noted that the values of I'n(yv) given in table I can 
be used to solve any problem of the type considered here which depends 
on a second-order differential equation or on a system of-such equations. 
ILthe data run is 2 seconds long, it-ie only necessary to ineert the 
data in.table I in place of the data used in this example-and proceed 
aswe have just done-. As mentioned earlier, if the data run is more or 
less than 2 seconds long, it is only necessary to make a preliminary 
transformation of the time scale so that in the new time scale the-data 
run is 2 seconds long, a process illustrated-in example II. 

Example II 

The first example served to illustrate the application of the method 
to an'equation ofthe form (lb), corresponding in the missile pitch- 
response problem to the case where only u(t) and 6(t) are measured. A 
problem involving equations, like (L3), of-the first order, corresponding 
to the case where q(t) is available in addition to- u(t) and S(t), will 
be illustrated now. 
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As in example I, the lift force will 
pitching moment nonlinear. The following 
assumed: 

m=2 

v=750 * 

IY = 100 

be assumed linear and the 
parametric values were 

r, = 1000 

M& = - 200 

I 

(29) 

Mq = - 500 

The nonlinear M(u) is plotted as the solid curve in figure 3. It should 
be noted that in contrast to the first example, the pitching moment is 
unstable at a = 0 and highly nonlinear. 

The "test data" were manufactured by determining a pulse response of 
this missile on the REAC. Again, the control characteristics of the sys- 
tem will not be considered, so that only free oscillations are shown in 
figure 4. 

Merely to have a standard length of run, a 2-second interval was 
aLways selected for the calculation of the integrating factors rn(YV) 
(see the Appendix for the definition of these quantities). To illustrate 
the computation procedure for data runs of different lengths, a l-second 
run will be considered in the present example. 

In order to use the integrating factors displayed in table III, it 
is necessary to make a preliminary transformation of the form 

This transformation has the following effect on equations (13): 

L1a-hcL’ L3 3-Q& 
-27 mV 

--U 
mV 

% F+q=E 

(30) 
Ml M2 8 - M3 a.3 --a-- -m- 
=Y IY =Y 

-2=d= !&+2dqe:Qtj 
Iy dT Iy dT q I 

Recalling that-for the problem under discussion, L1 = &, & = Ls = 0, 
e(t) = 0, it can be seen from equations (30) that the equations to be 
solved by least squares for the parameters have the forms , 
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and 

2 
(T)dT i- 2 

s 
d-d dT 

ddd dT + 

0 
f 2 

dT)Yv 
0 
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(T)dT = 0 

Ml 
-- 

=y 
f 2 2 

u(T)y,,(T)dT M, 
M3 2 

- - - 
0 =y 

f U2(T)yV(T)dT 
0 =y 

f ~3b%'v(T)dT + 
0 

2 5 f 2U(T) dy'(T) 
2 2 

dT dyv(T) - 3 f q(T)y,,(T)dT - =y dT =y 2 f q(T) dT dT = 0 
0 0 Q: 

The "data" of figure 4 are presented as functions of T in 
table III. The SUII~EI, which when multiplied by AT = 0.05 approximate 
the integrals in the last two equations, are given below table III. 
These sums have been listed in the appropriate p&es in table IV. With 
circled nmubers referring to columns in table IV, it can be seen that 
the above.ttiti equations are equivalent to the following: 

He&e, - 

or 

La = 1033 .- 

using the given values of m and V (eqs. (29)), while the equations for 
the moment parameters are 



When the sms displayed below -kble IV are inserted in the appropriate places, the resulting 
equations can be eolved to yield 

l2 
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Ml 
G = 521 
%! ,= - iz3 

IY 

M3 -= - 

IY 
197,000 

2% 
=Y 

= 38.66 

% -=I- 26.7 
=Y 

Hence, using the value of Iy given in equation8 (29), 

M, = 5.21xlQ4 Nit = .J930 

&=- 4.23~10~ k = - 2670 

M3 = - 1. g7x107 

(31-I 

To begin our discussion of these values, consider &,. A compar- 
ison of the values given for & by equations (29) and (31) shows that 
LZ has been found within 3.2 percent. The-. nonlinear pitching moment 

M(a) = (5.2W04)a - (4.23x103)a2 - (1.g7x107)u3 

has been superposed a8 the- dotted curve on the true moment curve Ln 
figure 3. As can be seen, the agreement for this strongly nonlinear 
problem ie excellent. Finally, the errors in the calculated values of 
the parameter8 & and Mq .are enormous, but-the reason for this is well 
known and easily explained. Coneider equations (13) which describe the 
motion. Eliminating q from these equations results in equation (14); 
since the lift ia linear, b, = b2 = 0. 
and I& have their principal-effect, 

The constant bo, on which Mq 
ie easily interpreted physically 

as a measure of the damping in the system. The other gross aspects of 
the response are relatively little affected by either Mq or.M&. Eow- 
ever, the important quantity in b. is not Mq or & alone, but--is thei& 
mm, Mq + K. In other worde, relatively large changes in Mq and Iv& 
are possible without causing any great Change in the motion, Just 80 long 
as their sum remain8 constant. Thus, one may not expectio find 
Mq and % accurately from an experiment such a6 this - only their sum 
may be relied upon. This is verified in the present example, since equa- 
tions (29) give the Burn 
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while equations (31) give 

MS + Qi = - 740 

25 

These two values differ by only 5.7 percent. 

It should be noted that the assumption, which has been made in 
this and the preceding example, of the linearity of the lift is not 
necessary. If it is suspected that the lift is linear but if no def- 
inite verification of this is available, a nonlinear form such as (12) 
can be assumed for the lift, and the coefficients Ll, h2, L3, - - BY 
can be calculated. If the lift is indeed linear, it should turn out 
that I-e., Lb, . . ., are small. Some limited experience has shown that 
this method does work but that the errors in the calculated parameters 
are somewhat larger than when the correct form is a88LUned. The reason 
for this is not Imown, but it appears that it may be associated with a 
tendency of the extraneous parameters b and L3 to fit the lift curve 
to that corresponding to the original data, errors and,all, at the 
expense of the smoothing operation which is necessary with this type of 
data and which is performed by the least squares process when the correct 
form is assumed. 

Example III 

We turn, finally, to a system described by a differential equation 
whose order is higher than the second. Since the higher order systems 
whose occurrence is most cormnon appear to be those of the fourth order, 
we shall be concerned with such a system. In order to simplify the pres- 
entation, a linear system will. be considered; there are no conceptual 
difficulties in the generalization to the nonlinear case. In addition, 
it will be assumed for simplicity that free oscillations are available 
for analysis. Thus, the system to be analyzed is a8SUned to be described 
by an equation of the form 

ak+ a3 d?x 2 

dt4 dt3 
+ a.2 s + a1 g + aox = 0 

A solution of this equation was calculated over the interval from 0 
to 2 seconds, for the following v8lues of the coefficients ai: 

a0 = 2544.9 a1 = 219.3 

a2 = 132.87 a3 =2.000 
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The result, representing the free oscillations in r-esponse to some dis- 
turbance, is tabulated in table V and presented graphically a8 the solid 
curve in figure 5. The sums needed for the solution of the problem are 
displayed below table V and again in table VI. The least-squares equa- 
tions for the parameters are 

24.2035 a0 - 16.7225 a1 - 1098.l$-+ + 1603.19 a3 = - 81036.4 

- 16.7225 a0 + 855.538 a1 + 664.495 a, - 82282.3 a3 = 85777.1 

- 10g8.1g~ao + 664.495 a, + 77898.7 Q - 94741.8 a3 = 7533580 
I 

1603.19 a0 - 82282.3 a1 - 94741.8 a, + 8523670 a3 = - 10567800 
J 

Solving these equations gives - 

a0 = 3098.7 "1 = 374-93 

a, = 141.29 a3 = 3.367 

It can be seen that these numbers are correct only to within order8 OP 
magnitude. On the other hand, it is not these coefficients which have 
direct physical significance; rather, it7Ls the damping and frequency of 
each of the components making up the oscillation which are important. 
In order to find these numbers, the following equation was set up 

h4 + 3.367 A” + 141.29 A2 + 374..g3 h + 3098.7 = 0 

and solved to find the roots: 

A= - I 0.046 t-10.7 i 

1 - 1.64 f 4.96 i 

The true roots are obtained by solving the equation 

h4 + 2.000 A3 + 132.87 A2 i- 219.32 A+ 2544x9 = 0 
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This gives 

i 

2 10.5 i 
h= 

- 1.00 + 4.71 1 

Thus, the frequencies of the oscillation have been found quite accurately, 
as has the damping parameter of the undamped component. The only large 
effect of the errors in the coefficients 80, aI, a2, and a3 is in the 
damping of one of the cowonents. The apparent ill-conditioning of the 
problem with respect to this parameter is not too surprising, for after 
all, either the true or calculated value of this damRing is large enough 
that the corresponding component of the motion is masked by the undamped 
component over a good part of the run. This may be seen best, perhaps, 
from figure 5 in which the solution of equation (32), using both the 
true and calculated values of the parameters, has-been plotted. It can 
be seen that the two curves do not differ by very much, indicating that 
the fit could not be much improved. 

CONCLUDING REMARKS 

A general theory of the so-called "equations-of-motion" methoda 
for the analysis of dynamical systems has been presented. It ha8 been 
shown that, when looked at from a new point of view, all such methods 
can be generalized so as to apply to linear and nonlinear systems alike. 
Using this theory, it has also been shown how new methods can be devel- 
oped in order to satisfy the requirements of particular problems. 

One new method has been described in detail. In certain cases, it 
reduces to one which is very similar to the well-known Fourier transform 
method (ref. 3) but in all cases has certain advantages over this latter 
method and over other method8 heretofore used. Its superiority is based 
on two facts. First, there is the heavy dependence on the initial con- 
ditions which occurs when using most of the previously known equations- 
of-motion methods; this dependence is entirely eliminated in the new 
method. This superiority manifests iteelf particularly when systems of 
higher order than the second are considered. If, for definiteness, a 
fourth-order system is considered, before the Fourier transform method 
(for example) can be applied, it is necessary to evaluate the test data 
and their first three time derivatives at the initial point. Accurate 
evaluation of all these derivatives is practically impossible, however, 
with the type of data obtained from most aerodynamic experiments. 

The second fact upon which the superiority of the PrOpOSed method 
rests is that most of the equations-of-motion methods used to this time 
demand an infinitely long record for their rigorous application. For 
some years now, questions about the errors introduced into an analysis 
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of a system by the finite length of records available have been asked, 
but answers. have not been offered. The second principal advantage of- 
the method described herein is that such questions are side-stepped com- 
pletely: There is no error at all from this source, since itis assumed 
from the start that only a finite record is available. iBecause. of this 
feature, the method avoids a further limitation of the- Fourier transform 
method (apparently the most accurate of all well-known methods of this 
type), which cannot be applied at all to some systems (e.g., unstable 
ones) without time-consuming and sometimes ineffective special devices, 
since the Fourier integrals ofthe data simply do not exist. 

The single exception to these remarks is the derivative method 
(refs. 2 and 3). The derivative method does notweight the initial ccm- 
ditiona and does not depend on an infinite-interval for its application. 
In addition, the derivative method has in the past been considered as 
the only well-known method which applies to nonlinear as well as linear 
systems. (0th er methods are described in references 2 and 10, but the 
derivative method appeara'to be the only one with such general applica- 
bility as we are discussing here.) There are, however, a number of 
very serious objections to the derivative.method. -First of all, there 
is the.inordinate amount of time and labor which must be expended in its 
application, principally because of the necessity for calculating time 
derivatives of the data. Second, and most important, is the question 
of accuracy. The accurate calculation of-the derivatives needed for the 
method is most-difficult, and this calculation is a large source of 
error. Besides, even if the derivatives could be computed with the 
requisite accuracy, the derivative method appears often to lead to badly 
conditioned equations, as pointed out in reference 2; because of this, 
many problems have been found for which the derivative method has been 
shown to lead to extremely large errors. The method proposed herein is 
subject to none of these weaknesses. The time required for its applica- 
tion is far less than that needed for the derivative method; in addition, 
it- appears to be well Suited to machine computation. Naturally, deriv- 
atives need not be calculatti, and the method shares the properties of 
the Fourier transformmethod which .cause it to lead to fairly well- 
conditioned equations. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., July l& 1954 
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APPEKDIX 

29 

s 

b 
NUMERICAL EVALUATION OF INTEGRALS OF TILE FOFM dt)y(t)dt 

a 

In 1928, Filon (ref. 8 - see also ref. 9, pp. 67-72) published a 
generalization of Simpson's rule for evaluation of integrals of the form 

J" 
x(t) sin wtdt 

a 

x(t) COB wtdt 

where x(t) represents numerical data. Filon's method, in contrast to 
Simpson's, has the distinction of.giving results whose errors are inde- 
pendent of the frequency w, depending only on how closely x(t) can be 
fitted to a sequence of parabolas. This method will be generalized to 
apply to integrals of the form 

where y(t) is known exactly (for application to the method described in 
the body of this report, y(t) is one of the method functions), while 
x(t) is given tabularly. 

Suppose the interval (a,b) is divided into 2h equal parts by points 
to = a < t, < . . . < t2h = b, where tn+= - tn = At = COnSk3nt. 

formula of the-form 
Then, a 

b 2h 

s 
x(t)y(t)dt %At 

c 
rn(Y)x(tn) (33) 

a n=o 

will be sought, where the l?n are constants which depend only on the 
function y. These constants will be determined by the condition that 
the formula (33, will give the integral exactly in the cases where x(t) 
is a constant, a linear function or a quadratic function of t. Suppose 
first that the interval (a,b) is divided into two parts only by points 
to, tl, and t2; since formula (33) is to be exact if x(t) = 1, (t - tl), 
or (t - t,)", we have 
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r,(y) f q(y) + 'r&4 = 1 
t2 

At- s 
y(t)dt- 

to 

- (Atbob) + (At)&(y) = & r" (t - t,>y(t>at (34) 
“to 

bt>2ro(y> + (At>2r,(y) = &- 
s 

t2 (t. - ti)2y('t-)dt 
-b 

J 

Equations (34) can be solved for rot rl, r2 to obtain 

ro(Y) = l 
s 

t2 
' 

-. ts 

2(At)" t 
(t - t,)2y(t)dt- - 

s 
(t - t,)y(t-)dt 

0 2(At>2 to 

r,(Y) = & 
s 

t2 
y(t) 

t0 

r,(Y) = l 
s 

t2 

2kws to 

s 

t2 
dt - - 

(-4:)' t 
.(t - +q)2&t)dt- 

0 

-(t - t,)'y(t)dt + ' f 
t2 

2bt)2 to 
(t- - tl)y(t)dt 

J 
Mow, if (a,b) is divided into 2h(S) parts, the integral is written a8 
follows: 

s 

b t2 t4 
x(t)y(t)dt = 

s 
x(t)y(t)dt + 

s 
x(t)y(t)dt + . . . + 

a t0 t2 

s 
t2h 

x(th(t)dt 
kh-2 

(36) 
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and equations (35) can be used to evaluate each of the integrals on the 
right-hand side, Calling- 

Jp(Y) = & 
s 

$+1 
Y( t)dt 

tp-1 

Kp(y) = *(it)2 f 
tp+1 

(t - tp)y(t)dt 

tP1 

L&Y) = 1 3 
tp+1 

2bt) s (t - tp>2y(t>dt 

Q-1 

we obtain from (33), (351 and (36) that 

.zh 

s 
'b x(t)y(t)dt = At 

c 
rn (Y>X(%l> 

a n=o 

where 

r,(y) = L,(Y) - K,(Y) 

&l(Y) = J2p-1 (Y> - 2&p4(~), P = 1, 2, . . ., h 

&3(Y) = L2&y) + K2p,l(~) + L,p+l(~) - Kwl(~)r 
(37) 

p=1,2,...,h-1 

r2h(Y) = L&-dY) + Kzh-dY) J 

It should be noted that if y(t) is identically unity, 

Jp(l) = 2 

k(l) = 0. 

Lp(l) = l/3 
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where the relations $1 = tp - At, tp+l = tp + At have been used 
repeatedly. Bence, from equation5 (37), 

r2p&) = h/3, p = 1, 2, . l ., h 

r,,(i) = 2/3, p = 1, 2, . . ., h - 1 

which exactly describes Simpson's rule. 

Eq-tions (37), with y(t) being chosen equal to the method func- 
tions, 
and V. 

were used to calculate the numbers displayed in tables I, XII, 
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TABLE I.- CALCULATIONS OF THE INTEGRALS NEEiDED FOR EXAMPLE I - Concluded 

I 44 

0 O.-m30 
1 1.0705 
2 -.g146 
2 -2.3288 

-.@W 
5 1.6673 

G 
I.4799 

.3689 
rz -1.2599 

-2.1oG9 
LO 0 
11 2.lmg 
: -1.4799 1.2539 

-.3w 

z -1.6573 .4809 
17 2.3288 
La -9147 
19 -1.0705 
20 -1.5561 
21 -1.0705 
22 -9147 
23 2.3288 
24 A-3 
25 -1.6673 
26 -1.4799 
27 -.W9 
28 1.2939 
19 2.1009 
30 0 
Sl -2.Lm9 

-1.2599 
E .3@9 

;: 
1.4799 
1.6673 

iG 
-.W 

-2.p88 

g 
-.9146 
1.wo5 

.77&J 

caxo 
cox 0 
c@x 0 

I -.@-I0 
m 
I 

49 

MSl,) 

0.0295 
.4331 
.X91 

1.2167 

:Y$ 
.wrr 

:%P; 
.9847 
X87 
.WP 
.237o 

1.12% 
.6785 
.6E.5 

-.0378 
.2720 
.4g10 

1.2482 

:gi 
-.o378 

Ale6 
-6785 

1.12% 
.237o 
.o931 
.ll87 

:$2 
.8094 
.m37 
.1592 
.365-I 

1.2l.67 

:g: 
-.a95 
0 
0 

.lg61 

.046&l 

.-09t 

0.0566 
1.OSp 

.!m4 

117% 
-:35& 

1.1275 
.=92 

1::;: 
-1914 

:LT 
-.3735 

-l.lWl 
-.29l8 

::g 
0 
-.7187 

-:283 
1.131 

.3735 
-.7144 
-.i%o3 
-.1g14 

.6570 

.973-r 
-.12gs 

-::iZ 

:gZ 
.3776 

-.yl74 
-1.0651 
-.O% 
0 
0 

-.Ol& 

47 

1 r,(Y,,) 
s+ 

O.TWi.8 
.93& 

-1.0631 
-2.m1 
-.=% 
2.o4p 
1.2387 
-.W 

-1.5483 
-1.2723 

.@35 
2.2944 

a53 
-1.83% 
-l.W5 

.1*1 
1.4846 
1.!77!% 
-.6305 

-2.3261 
-.6305 

x2 
:1g21 

-1.3805 
-1.83% 

.3853 
2.2944 

.W5 
-1.2723 
-1.5483 
-.y10 
1.2387 
2.0457 
-296 

-2.2001 
-1.0631 

.93u 

.-ma 
0 
0 

-A747 

4.9 

rJ,(Y& 

0.0321 
.4g14 
.W9 

1.X?% 
.2lo5 

:2z; 
l.l2$5 
-649 
.4g14 

-.0642 

:?& 
1.1255 

.2105 

.w5 

.2105 
1.1255 
.&49 
.4g14 

-.ca!2 
.4g14 
.64 

1.125s 
.2105 
.ogg5 
.2105 

1.1255 

:C$P 
-.0642 

.4g14 

.654 
I.=55 

.2105 

.@95 
.2x5 

1.1255 

:t.g 
-.0321 

.2141 

.04689 
sol& 

4 
1 r&J Jle 

o.wo3 
1.0788 

.4673 
-A%7 
-.7%1 
0 

.7%1 
-666-i 

-A673 
-Lo786 
0 
1.0788 

.4673 
-A667 
-.7%51 
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:'2_: 
-A673 

-Lo788 
0 
l-0788 

.4673 
-.6667 
-.7%1 
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:7g 
-A673 

-1.Uf88 
0 
1.488 

A673 

::g 
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2: 
-A673 

-1.0788 
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-.ol24 

0.7951 
.7010 

-1.26S4 

-':fg2 
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.4g14 

::-:g 
:7010 

1.9901 
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-1.2864 
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e'%.i 
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I;-:% 
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.7010 
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TABLE V.- CALCULATION OF TJif2 INTEGRALS NEEDED FOR EXAMPLE III - Concluded 

72 

1.7865 
.ll17 

-J-%: 
4:0571 

-2.7607 
3.5401 

-7.338e 
-2.3484 
9.3367 

-2.5377 
1.1638 
-.3535 

-6.6181 
6.2166 
3,.65&Z 

-2.4454 
2.4995 

-7.wQ 

L-w 
-2.4995 
2.4454 

-3.69 

-~% 
:3se5 

-1.1638 
2.5377 

-; * x-&s; 

713382 

-?7Y$ 
-4:0571 

-?ZZ 
-:m7 

-1.7865 
0 
0 

cc9 x 0, = -.oz 

73 

& % 
( > 
YB t4) 

8.l426 
-19.8366 

2;:$% 

":~E 
15843 

48.6el.l 

TI-g: 
-l2:4gEa 
13.3047 

-21.3858 
U.1777 
17.8633 

-24.2143 
~~3676 
-8.2646 

-12.76ca 
33.@+6 

-l.2.76cm 
-8.2646 
u.8676 

-24.21ir3 
17.8633 
13.1777 

-21.3848 
lS.jOk7 

42.4g80 
-4.4593 
27.5345 

-la.EQll 

4~~" 
-21:7377 
27.55@ 

-1pg 

0' 
0 

.I69 

74 

Lh(Yld) 

":ZZ 

:gZ 

:$ 
.0&l 
-9844 

:2% 
-.0671 
.2980 
:g% 
.06el 
.Ol% 
.CkEQl 
.g844 

:g% 
-.c671 
.2580 
:$Z 
.cel 

:%2 
.g844 

:2% 
-.0671 
-2580 
:$??I 
.0&l 
-0154 

:g: 

:2% 
-.0335 

-.709 

7s 

-0.0693 
.a847 
.7734 

-.gm3 

P70 

:G 

::8$ 
0 

A847 
.7734 

-.saoe 
;.%70 

.%70 

IiF; 

0 

$2 
-.W 
-.%70 
0 

.%70 

11% 
0 

.a047 

.7734 
-.saos 
-.%70 
0 

:gi 
-.7'134 

-:% 

.2724 -.Ol28 -.114 .235 

0.1514 
1.7696 

-1.6042 
-2.2435 
1.529 

.9m 
l-599 

:.‘A: 
1:7696 

.3027 
1.7696 

-1.6842 
-2.2435 

':Z% _ .~ 
1.5329 

-2.2433 
-1.6842 
1.7696 

-3ce7 
1.7696 

-1.6842 
-2.2435 

_ .- 
1.5329 

:.‘Ag 
1:76g6 

-3ce7 
1.7696 

-1.6842 
-2.2435 
1.539 

-9478 
1.5329 

0 
.OOZ? 

0 
-1.2097 

0 

i.2097 
-6.7667 
7.6917 
-.w22 
0 

.ax2 

-lo.2037 
-6.7667 
7.6917 
-.cKe3 
0 

-1.9516 

78 

1 r, yla (+I 
b4 ( > 

7.1188 
-19.9014 
11.x07 
13.8720 

-18.6sg4 
12.0588 

-l8.62g4 
13.8720 
u.5107 

-19.9014 
14.2374 

-19.9014 
11.5107 
13.8720 

-1B.Qg4 
l2.OpB 

48.Qg4 
13.8720 
11.5107 

-19.9014 
14.2374 

-19.9014 
11.5107 
13.8120 

48.62g4 
12.0588 

-18.Qg4 
13.8720 
~.UW 

-19.9014 
14.2374 

-19.9014 
Il.5107 

-3:z-g 

-~:~ 
U.@EO 
u-5107 

-19.9014 
7.1188 
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Figure 1.b The nonlinear pitching-moment curve for example I. 
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Figure 2.- Tket data” for example I. 
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Figure 3.- The nonlinear pitching-moment curve -for example II. 
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Figure 4.- "Test datav for example II. 
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Figure 5.- "Test data" for example III. ul P 


